home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Games of Daze
/
Infomagic - Games of Daze (Summer 1995) (Disc 1 of 2).iso
/
x2ftp
/
msdos
/
math
/
newmat08
/
solution.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
1995-01-11
|
4KB
|
144 lines
//$$ solution.cpp // solve routines
// Copyright (C) 1994: R B Davies
#define WANT_STREAM // include.h will get stream fns
#define WANT_MATH // include.h will get math fns
#include "include.h"
#include "boolean.h"
#include "myexcept.h"
#include "solution.h"
int SolutionException::action = 1;
int iabs(int i) { return (i>=0) ? i : -i; }
SolutionException::SolutionException(char* c) : Exception(iabs(action))
{
if (action) cout << "Error detected by solution package\n"
<< c << "\n";
if (action < 0) exit(1);
};
inline Real square(Real x) { return x*x; }
void OneDimSolve::LookAt(int V)
{
lim--;
if (!lim) Throw(SolutionException("Does not converge"));
Last = V;
Real yy = function(x[V]) - YY;
Finish = (fabs(yy) < acc);
y[V] = vpol*yy;
}
void OneDimSolve::HFlip() { hpol=-hpol; State(U,C,L); }
void OneDimSolve::VFlip()
{ vpol = -vpol; y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2]; }
void OneDimSolve::Flip()
{
hpol=-hpol; vpol=-vpol; State(U,C,L);
y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2];
}
void OneDimSolve::Linear(int I, int J, int K)
{
x[J] = (x[I]*y[K] - x[K]*y[I])/(y[K] - y[I]);
// cout << "Linear\n";
}
void OneDimSolve::Quadratic(int I, int J, int K)
{
// result to overwrite I
Real YJK, YIK, YIJ, XKI, XKJ;
YJK = y[J] - y[K]; YIK = y[I] - y[K]; YIJ = y[I] - y[J];
XKI = (x[K] - x[I]);
XKJ = (x[K]*y[J] - x[J]*y[K])/YJK;
if ( square(YJK/YIK)>(x[K] - x[J])/XKI ||
square(YIJ/YIK)>(x[J] - x[I])/XKI )
{
x[I] = XKJ;
// cout << "Quadratic - exceptional\n";
}
else
{
XKI = (x[K]*y[I] - x[I]*y[K])/YIK;
x[I] = (XKJ*y[I] - XKI*y[J])/YIJ;
// cout << "Quadratic - normal\n";
}
}
Real OneDimSolve::Solve(Real Y, Real X, Real Dev, int Lim)
{
Tracer et("OneDimSolve::Solve");
lim=Lim;
if (Dev==0.0)Throw(SolutionException("Dev is zero"));
L=0; C=1; U=2; vpol=1; hpol=1; y[C]=0.0; y[U]=0.0;
if (Dev<0.0) { hpol=-1; Dev = -Dev; }
YY=Y; // target value
x[L] = X; // initial trial value
LookAt(L); if (Finish) goto finish;
if (y[L]>0.0) VFlip(); // so Y[L] < 0
x[U] = X + Dev * hpol;
LookAt(U); if (Finish) goto finish;
if (y[U] > 0.0) goto captured1;
if (y[U] == y[L])
Throw(SolutionException("Function is flat"));
if (y[U] < y[L]) HFlip(); // Change direction
State(L,U,C);
for (i=0; i<20; i++)
{
// cout << "Searching for crossing point\n";
// Have L C then crossing point, Y[L]<Y[C]<0
x[U] = x[C] + Dev*hpol;
LookAt(U); if (Finish) goto finish;
if (y[U] > 0) goto captured2;
if (y[U] < y[C])
Throw(SolutionException("Function is not monotone"));
Dev *= 2.0;
State(C,U,L);
}
Throw(SolutionException("Can't locate a crossing point"));
captured1:
// cout << "Captured - 1\n";
// We have 2 points L and U with crossing between them
Linear(L,C,U); // linear interpolation - result to C
LookAt(C); if (Finish) goto finish;
if (y[C] > 0.0) Flip(); // Want y[C] < 0
if (y[C] < 0.5*y[L]) { State(C,L,U); goto binary; }
captured2:
// cout << "Captured - 2\n";
// We have L,C before crossing, U after crossing
Quadratic(L,C,U); // quad interpolation - result to L
LookAt(L); if (Finish) goto finish;
if ((x[L] - x[C])*hpol <= 0.0 || (x[L] - x[U])*hpol >= 0.0)
{ State(C,L,U); goto captured1; }
State(C,L,U);
// cout << "Through first stage\n";
if (y[C] > 0.0) Flip();
if (y[C] > 0.5*y[L]) goto captured2;
else { State(C,L,U); goto captured1; }
binary:
// We have L, U around crossing - do binary search
// cout << "Binary\n";
for (i=3; i; i--)
{
x[C] = 0.5*(x[L]+x[U]);
LookAt(C); if (Finish) goto finish;
if (y[C]>0.0) State(L,U,C); else State(C,L,U);
}
goto captured1;
finish:
return x[Last];
}